ISSN 1600-5368

Sumod George and Ashwini Nangia*

School of Chemistry, University of Hyderabad, Hyderabad 500 046, India

Correspondence e-mail: ansc@uohyd.ernet.in

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.002 \text{ Å}$ R factor = 0.045 wR factor = 0.134 Data-to-parameter ratio = 15.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

N-(3-Pyridyl)urea

The crystal structure of the title compound, $C_6H_7N_3O$, exhibits packing typical of amides, with $N-H\cdots O$ hydrogen-bond dimers forming a corrugated tape and $N-H\cdots N$ bonds connecting the tapes.

Received 29 June 2001 Accepted 9 July 2001 Online 13 July 2001

Comment

In a recent monograph on the role of amides in non-covalent syntheses (Palmore & MacDonald, 2000), the urea functional group is considered as part of the amide family. In connection with an ongoing crystallographic study of aromatic ureas (George *et al.*, 2001), we have determined the crystal structure of *N*-(3-pyridyl) urea, (I).

The pyridyl ring in (I) is tilted to the urea plane by 163.94 (14)° (C8/N7/C6/C5, Fig. 1). The crystal structure of (I) contains a corrugated tape of (syn) N10-H8...O9 and (anti) N10-H9...O9 hydrogen-bond dimers along the *a* axis, with an (anti) N7-H7···N4 bond connecting screw-axis-related molecules in the *b* direction (syn and anti refer to ureido H atoms) (Fig. 2). The a axis of 4.8558(10) Å in (I) is smaller than the characteristic 5.1 Å packing in carboxylic amides because of the zigzag corrugated pattern. A crystal structure assembled by N-H···N hydrogen bonding interaction was published recently in this journal (Lynch & McClenaghan, 2001). In contrast to the structure of (I), the molecular conformation and crystal packing in N-(2-pyridyl)urea (Velikova et al., 1997) are quite different. This latter structure contains parallel zigzag ribbons of molecules hydrogen bonded through (syn) N-H···O dimers along the *ab* diagonal. The molecule adopts a planar conformation because of an intramolecular (anti) N-H···N interaction. Thus, isomeric 2- and 3-pyridylurea have very different crystal structures.

Experimental

Compound (I) was synthesized by slowly adding NaOCN (130 mg, 2 mmol) dissolved in hot water (1 ml) to a solution of 3-aminopyridine (188 mg, 2 mmol) in glacial AcOH (0.2 ml) with stirring. The aqueous solution was neutralized and extracted with chloroform to remove the unreacted 3-aminopyridine. Column chromatography and recrystallization from EtOAc afforded crystals of (I) (m.p. 472– 474 K).

 \odot 2001 International Union of Crystallography Printed in Great Britain – all rights reserved

ORTEPII (Johnson, 1976) plot of (I) with 50% probability ellipsoids.

 $D_x = 1.445 \text{ Mg m}^{-3}$

Cell parameters from 25

Mo $K\alpha$ radiation

reflections

T = 293 (2) K

 $h = 0 \rightarrow 6$

 $k = 0 \rightarrow 11$

 $l = -22 \rightarrow 22$

Cube, colourless

 $0.12\,\times\,0.11\,\times\,0.10~\rm{mm}$

3 standard reflections

frequency: 90 min

every 150 reflections

intensity decay: none

 $w = 1/[\sigma^2(F_o^2) + (0.0665P)^2]$

where $P = (F_o^2 + 2F_c^2)/3$

+ 0.1436P]

 $(\Delta/\sigma)_{\rm max} = 0.019$

 $\Delta \rho_{\rm max} = 0.25 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.25 \ {\rm e} \ {\rm \AA}^{-3}$

 $\begin{array}{l} \theta = 9.0 {-}10.6^{\circ} \\ \mu = 0.10 \ \mathrm{mm}^{-1} \end{array}$

Crystal data

 $\begin{array}{l} C_{6}H_{7}N_{3}O\\ M_{r}=137.15\\ \text{Monoclinic, }P2_{1}/n\\ a=4.8558\ (10)\ \text{\AA}\\ b=8.1621\ (16)\ \text{\AA}\\ c=15.919\ (3)\ \text{\AA}\\ \beta=92.16\ (3)^{\circ}\\ V=630.5\ (2)\ \text{\AA}^{3}\\ Z=4 \end{array}$

Data collection

Enraf-Nonius CAD-4 diffractometer ω scans 2021 measured reflections 1835 independent reflections 1362 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.010$ $\theta_{\text{max}} = 30.0^{\circ}$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.134$ S = 1.081835 reflections 119 parameters All H-atom parameters refined

Table 1

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N7-H7\cdots N4^{i}$ $N10-H8\cdots O9^{ii}$ $N10-H9\cdots O9^{iii}$ $C2-H2\cdots O9^{iv}$	0.888 (19) 0.92 (2) 0.842 (19) 0.97 (2)	2.156 (18) 2.05 (2) 2.193 (19) 2.67 (2)	2.984 (2) 2.9657 (19) 2.9734 (19) 3.629 (2)	155.0 (16) 173.0 (18) 154.2 (18) 168.4 (16)

Symmetry codes: (i) $-\frac{1}{2} - x, y - \frac{1}{2}, \frac{3}{2} - z$; (ii) -x, 1 - y, 2 - z; (iii) x - 1, y, z; (iv) 1 - x, 2 - y, 2 - z.

The corrugated tape of $N-H\cdots O$ hydrogen bonds along [100]. For clarity, the $N-H\cdots N$ bond is not shown. Notice the van der Waals packing of pyridyl rings between the hydrogen-bond tapes.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *Xtal3.5* (Hall *et al.*, 1995); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1990); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *PLUTON-(C)* (Spek, 1979–1997); software used to prepare material for publication: *SHELXL*97.

The authors thank the DST for funding the X-ray diffractometer facility.

References

- Enraf-Nonius (1989). *CAD-4 Software*. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- George, S., Nangia, A. & Lynch, V. M. (2001). Acta Cryst. C57, 777-778.
- Hall, S. R., Flack, H. D. & Stewart, J. M. (1995). Editors. *Xtal*3.5 *Reference Manual*. Universities of Western Australia, Australia, Geneva, Switzerland, and Maryland, USA.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Lynch, D. E. & McClenaghan, I. (2001). Acta Cryst. E57, 04-05.

Palmore, G. T. R. & MacDonald, J. C. (2000). The Amide Linkage: Selected Structural Aspects in Chemistry, Biochemistry and Material Science, edited by A. Greenberg, C. M. Breneman & J. F. Liebman, pp. 291–336. Chichester: John Wiley.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Spek, A. L. (1979-1997). PLUTON-(C). Utrecht University, The Netherlands.

Velikova, V., Angelova, O. & Kossev, K. (1997). Acta Cryst. C53, 1273-1275.